A note on compact-like semitopological groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Locally Compact Groups

In this note we shall prove that every locally compact group can be embedded as a closed subgroup in a unimodular group. If the original group is locally Euclidean, the enlarged group will be also, hence the fifth problem of Hilbert is reduced to the unimodular case. We shall use certain results concerning Haar measure whose proof may be found in A. Weil, U integration dans les groupes topologi...

متن کامل

Remarks on extremally disconnected semitopological groups

Answering recent question of A.V. Arhangel’skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.

متن کامل

A Note on Operator Biprojectivity of Compact Quantum Groups

Given a (reduced) locally compact quantum group A, we can consider the convolution algebra L(A) (which can be identified as the predual of the von Neumann algebra form of A). It is conjectured that L(A) is operator biprojective if and only if A is compact. The “only if” part always holds, and the “if” part holds for Kac algebras. We show that if the splitting morphism associated with L(A) being...

متن کامل

A note on quasi irresolute topological groups

In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2019

ISSN: 2313-0210,2075-9827

DOI: 10.15330/cmp.11.2.442-452